Tracking the transition of early-universe quark soup to matter as we know it

(Phys.org) —Ever wonder how the hot soup of subatomic particles that filled the early universe transformed into the ordinary matter of today’s world? Nuclear physicists exploring this question can’t exactly travel back 13.8 billion years to watch what really happened, but they can recreate matter at the extreme temperatures and densities that existed just after the Big Bang by smashing together ordinary atomic nuclei at the Relativistic Heavy Ion Collider (RHIC). At peak performance, this extraordinarily versatile atom smasher at the U.S. Department of Energy’s Brookhaven National Laboratory reproduces the primordial soup thousands of times per second. Using sophisticated detectors to track what happens as exotic particles emerge from the trillion-degree collision zone and “freeze out” into more familiar forms of matter, scientists are turning up interesting details about how the transition takes place.

from Phys.org: Physics News http://ift.tt/OqEAdf

Leave a comment

Your email address will not be published.


*


Show Buttons
Hide Buttons