Large-Scale Quantum Chip Validated – New Research Paper

A team of scientists at USC has verified that quantum effects are indeed at play in the first commercial quantum optimization processor.

 


 

The team demonstrated that the D-Wave processor housed at the USC-Lockheed Martin Quantum Computing Center behaves in a manner that indicates that quantum mechanics plays a functional role in the way it works. The demonstration involved a small subset of the chip’s 128 qubits.

 

This means that the device appears to be operating as a quantum processor — something that scientists had hoped for but have needed extensive testing to verify.

 

The quantum processor was purchased from Canadian manufacturer D-Wave nearly two years ago by Lockheed Martin and housed at the USC Viterbi Information Sciences Institute (ISI). As the first of its kind, the task for scientists putting it through its paces was to determine whether the quantum computer was operating as hoped.

 

“Using a specific test problem involving eight qubits we have verified that the D-Wave processor performs optimization calculations (that is, finds lowest energy solutions) using a procedure that is consistent with quantum annealing and is inconsistent with the predictions of classical annealing,” said Daniel Lidar, scientific director of the Quantum Computing Center and one of the researchers on the team, who holds joint appointments with the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

 

Quantum annealing is a method of solving optimization problems using quantum mechanics — at a large enough scale, potentially much faster than a traditional processor can.

 

Research institutions throughout the world build and use quantum processors, but most only have a few quantum bits, or “qubits.”

 

Qubits have the capability of encoding the two digits of one and zero at the same time — as opposed to traditional bits, which can encode distinctly either a one or a zero. This property, called “superposition,” along with the ability of quantum states to “tunnel” through energy barriers, are hoped to play a role in helping future generations of the D-Wave processor to ultimately perform optimization calculations much faster than traditional processors.

 

English: Quantum annealing: a rugged cost/ener...

English: Quantum annealing: a rugged cost/energy landscape (cost along y axis, configuration along x), showing that the thermal jump has to be over the barrier (in red) – but the quantum tunneling may be THROUGH the barrier (in blue); Thus quantum tunneling can be a more efficient means of traversing the rugged landscape when the barriers are tall but thin. (Photo credit: Wikipedia)

 

With 108 functional qubits, the D-Wave processor at USC inspired hopes for a significant advance in the field of quantum computing when it was installed in October 2011 — provided it worked as a quantum information processor. Quantum processors can fall victim to a phenomenon called “decoherence,” which stifles their ability to behave in a quantum fashion.

 

Leave a comment

Your email address will not be published.


*


Show Buttons
Hide Buttons